Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Mol Struct ; 1261: 132808, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-1734828

ABSTRACT

Prevention, accurate diagnosis, and effective treatment of infections are the main challenges in the overall management of infectious diseases. The best example is the ongoing SARs-COV-2(COVID-19) pandemic; the entire world is extremely worried about at present. Interestingly, heterocyclic moieties provide an ideal scaffold on which suitable pharmacophores can be designed to construct novel drugs. Indoles are amongst the most essential class of heteroaromatics in medicinal chemistry, which are ubiquitous across natural sources. The aforesaid derivatives have become invaluable scaffolds because of their wide spectrum therapeutic applications. Therefore, many researchers are focused on the design and synthesis of indole and associated hybrids of biological relevance. Hence, in the present review, we concisely discuss the indole containing natural sources, marketed drugs, clinical candidates, and their biological activities like antibacterial, antifungal, anti-TB, antiviral, antimalarial, and anti-leishmanial activities. The structure-activity relationships study of indole derivatives is also presented for a better understanding of the identified structures. The literature data presented for the anti-infective agents herein covers largely for the last twelve years.

2.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: covidwho-1305742

ABSTRACT

Malaria control relies heavily on the small number of existing antimalarial drugs. However, recurring antimalarial drug resistance necessitates the continual generation of new antimalarial drugs with novel modes of action. In order to shift the focus from only controlling this disease towards elimination and eradication, next-generation antimalarial agents need to address the gaps in the malaria drug arsenal. This includes developing drugs for chemoprotection, treating severe malaria and blocking transmission. Plasmodial kinases are promising targets for next-generation antimalarial drug development as they mediate critical cellular processes and some are active across multiple stages of the parasite's life cycle. This review gives an update on the progress made thus far with regards to plasmodial kinase small-molecule inhibitor development.


Subject(s)
Antimalarials/pharmacology , Drug Discovery/trends , Malaria/drug therapy , Plasmodium/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Calcium/metabolism , Casein Kinase I/metabolism , Culicidae , Drug Design , Drug Resistance , Glycogen Synthase Kinase 3/metabolism , Humans , Imidazoles/pharmacology , Inhibitory Concentration 50 , Life Cycle Stages/drug effects , MAP Kinase Signaling System , Phosphotransferases/chemistry , Plasmodium/enzymology , Pyridines/pharmacology
3.
Front Immunol ; 11: 1708, 2020.
Article in English | MEDLINE | ID: covidwho-688089

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is the pathogen that causes coronavirus disease 2019 (COVID-19). As of 25 May 2020, the outbreak of COVID-19 has caused 347,192 deaths around the world. The current evidence showed that severely ill patients tend to have a high concentration of pro-inflammatory cytokines, such as interleukin (IL)-6, compared to those who are moderately ill. The high level of cytokines also indicates a poor prognosis in COVID-19. Besides, excessive infiltration of pro-inflammatory cells, mainly involving macrophages and T-helper 17 cells, has been found in lung tissues of patients with COVID-19 by postmortem examination. Recently, increasing studies indicate that the "cytokine storm" may contribute to the mortality of COVID-19. Here, we summarize the clinical and pathologic features of the cytokine storm in COVID-19. Our review shows that SARS-Cov-2 selectively induces a high level of IL-6 and results in the exhaustion of lymphocytes. The current evidence indicates that tocilizumab, an IL-6 inhibitor, is relatively effective and safe. Besides, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, intravenous immunoglobulin, and antimalarial agents could be potentially useful and reliable approaches to counteract cytokine storm in COVID-19 patients.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Interleukin-6/metabolism , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Adrenal Cortex Hormones/therapeutic use , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antimalarials/therapeutic use , Artesunate/therapeutic use , COVID-19 , Coronavirus Infections/virology , Hemoperfusion/methods , Humans , Hydroxychloroquine/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Interleukin-6/antagonists & inhibitors , Mice , Pandemics , Pneumonia, Viral/virology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , SARS-CoV-2
4.
Molecules ; 25(7)2020 Mar 27.
Article in English | MEDLINE | ID: covidwho-326826

ABSTRACT

Malaria is a life-threatening disease and, what is more, the resistance to available antimalarial drugs is a recurring problem. The resistance of Plasmodium falciparum malaria parasites to previous generations of medicines has undermined malaria control efforts and reversed gains in child survival. This paper describes a continuation of our ongoing efforts to investigate the effects against Plasmodium falciparum strains and human microvascular endothelial cells (HMEC-1) of a series of methoxy p-benzyl-substituted thiazinoquinones designed starting from a pointed antimalarial lead candidate. The data obtained from the newly tested compounds expanded the structure-activity relationships (SARs) of the thiazinoquinone scaffold, indicating that antiplasmodial activity is not affected by the inductive effect but rather by the resonance effect of the introduced group at the para position of the benzyl substituent. Indeed, the current survey was based on the evaluation of antiparasitic usefulness as well as the selectivity on mammalian cells of the tested p-benzyl-substituted thiazinoquinones, upgrading the knowledge about the active thiazinoquinone scaffold.


Subject(s)
Antimalarials/pharmacology , Endothelial Cells/drug effects , Malaria/drug therapy , Plasmodium falciparum/drug effects , Quinones/chemistry , Quinones/pharmacology , Endothelial Cells/parasitology , Inhibitory Concentration 50 , Parasitic Sensitivity Tests , Quinones/chemical synthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL